
X-ray photoemission spectroscopy as a probe of charge-gap opening in many-electron

systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 10089

(http://iopscience.iop.org/0953-8984/13/44/320)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 15:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 10089–10103 PII: S0953-8984(01)27071-4

X-ray photoemission spectroscopy as a probe of
charge-gap opening in many-electron systems

Robert Haslinger1 and Nic Shannon2

1 Department of Physics, UW–Madison, Madison, WI-53706, USA
2 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden,
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Abstract
Core-hole (x-ray) photoemission (XPS) provides a powerful indirect probe
of the low-energy charge excitations of a many-electron system. We have
previously argued that XPS can be used to study the way in which a (pseudo)gap
opens for charge excitations across, for example, a metal–superconductor
transition, independently of any change in the spin excitation spectrum, and
so provide information about spin–charge separation. Here we consider how
the loss of low-energy excitations modifies XPS spectra in the context of several
simple models, considering particularly the case of gap opening for both s- and
d-wave superconductors, and find that XPS, like the nuclear magnetic resonance
technique, is in principle sensitive to nodes in the superconducting gap function.

1. Introduction

As a many-electron system undergoes a phase transition, the nature of its low-energy
excitations is usually radically altered. For this reason, experiments which are sensitive to
the rearrangement, and in particular to the loss of, low-energy excitations (to the opening of
a gap) can inform us about how phase transitions take place. Nuclear magnetic resonance
(NMR) has been used widely in this context to study how low-lying spin excitations evolve
in different phases. Famously, NMR reveals a second ‘transition’ temperature T ∗ in the
underdoped cuprate superconductors, below which a gap opens for spin (and probably charge)
excitations, even in the absence of superconducting order [1].

One of us has proposed the use of core-level (x-ray) photoemission (XPS) as a probe
complementary to NMR, offering similar insight into the evolution of charge-carrying
excitations [2,3]. The opening of a charge gap in a metallic system has certain simple systematic
consequences for XPS lineshapes—an overall shift in the core line to higher binding energy,
and a transfer of spectral weight from high energies to the line threshold. These effects are
both due to the suppression of low-energy charge-density fluctuations and can be understood
on quite general physical grounds without recourse to specific models or calculations. Most
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importantly, such modifications of the XPS lineshape depend only on variations in the charge
spectrum near the Fermi surface. Within the usual picture by means of which XPS spectra are
understood, similar variations in the spin spectrum have no effect on XPS lineshapes.

The ability to probe the spin and charge spectra separately would be extremely useful
for exploring potential spin–charge-separated systems. It has been suggested by some that
the NMR-observed pseudogap at T ∗ in the underdoped cuprates is actually a spin gap. This
proposal is, of course, hotly contested, but the application of separate spin (NMR) and charge
(XPS) probes could help resolve the issue, and evidence for a (pseudo)gap opening for charge
excitations atT ∗ has been inferred from the temperature dependence of XPS spectra [16]. There
are many other scenarios in which such a comparison might also be useful—for example in
metal–insulator transitions where electron–electron interaction is strong, or in one-dimensional
materials for which theory, for example the Luttinger–Tomonaga models, often suggests spin–
charge separation.

In this article we extend the analysis of [2, 3] to try to understand the most general con-
sequences of charge-gap opening for XPS—the systematic changes which can be expected to
occur in the simplest observed lineshapes—for simple models, in a quantitative way. A good
understanding of the behaviour of the simplest models is clearly a necessary first step before
attempting the more complicated task of interpreting real experimental data from complicated
materials such as the cuprates or 1D charge-density-wave systems. With this in mind we make
a detailed case study of the way in which the familiar asymmetric Doniach–Sunjic lineshape
for a core level in a metal [4] is modified by a phase transition to a gapped semiconductor or
superconductor.

We begin in section 2 with an review of the simple perturbative formalism used to calculate
XPS lineshapes and associated shifts. In section 3 we calculate the XPS spectrum for a band
metal and a simple toy model of a semiconductor within perturbation theory. In section 4 we
consider lineshapes and shifts of s- and d-wave superconductors for a free-electron gas and a
d-wave superconductor on a two-dimensional tight-binding lattice at half-filling.

In the concluding section, section 6, we discuss the consequences and limitations of these
results, as applied to experiment, making a comparison with angle-resolved photoemission
(ARPES) and emphasizing the potential role of XPS as a diagnostic tool for strongly correlated
systems.

2. Formalism

In an XPS experiment a high-energy (x-ray) photon ejects a single electron from a tightly
bound atomic level in the sample material, typically a prepared metal surface. The energy
distribution of the emitted photoelectrons is measured. Within the sudden approximation, and
neglecting all momentum dependence of the matrix elements, the XPS lineshape for the core
level is simply proportional to the spectral function for the resulting core hole [5]. Because
photoemission leaves behind this unscreened and massive positive charge (recoil of the core
hole can safely be neglected) it is accompanied by a violent low-energy ‘shake-up’ of the
remaining itinerant electrons. This many-body effect has important consequences for the core
lineshape, as described below, and it is the suppression of the ‘shake-up’ by a gap for charge
excitations which makes XPS useful as a probe of different phases.

In practice various other mechanisms serve to limit the lifetime of the core hole—which
must eventually be filled by the decay of an electron from a higher energy level—and we model
these by convoluting the calculated lineshape with a Lorentzian whose width is the inverse
core-level lifetime. We neglect a further (temperature-dependent) broadening due to phonon
processes, which could be accounted for by further convolution with a Gaussian.
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Perhaps more importantly, we do not consider either the possibility of single atomic lines
being split into multiplets by interaction with neighbouring atoms on the lattice (which is
important for some core levels in the cuprates [6]), or the case in which the core hole binds an
itinerant electron. The latter can also lead to multiple lines accompanying each core level, and
has been treated for the ordinary free-electron gas by several authors [7].

We model the combined system of core-level and itinerant electrons with the simple
Hamiltonian

H = H0 + Vc (1)

where H0 is the unperturbed Hamiltonian describing the itinerant-electron system, and

Vc = εdd
†d + V (t) = εdd

†d +
1

ν2

∑
k,q

V (q)c
†
k−q(t)ck(t) (2)

is switched on suddenly at t = 0 when the core hole is created. εd is the energy of the core
hole, d is the core-hole annihilation operator, and c is the electron annihilation operator. Spin
does not enter into the problem and has been suppressed in our notation.

We model the gapless system as a band of spinless non-interacting electrons

H0 =
∑
k

εkc
†
kck (3)

characterized by a density of states N(ω) = ∑
k δ(ω − εk). Semiconductors are modelled

in the same way, but with zero density of states within the gap |ω| < �. We use the usual
BCS (Bardeen–Cooper–Schrieffer) description of superconducting systems, with quasiparticle
dispersion E2

k = ε2
k +�2

k , where εk is the underlying band dispersion and �k the (momentum-
dependent) superconducting order parameter.

Within the sudden approximation [5], the XPS spectrum is proportional to the core-electron
spectral function

Ah(ω) = −2 Im{Gret
h (ω)} (4)

where Gret
h (ω) is the retarded core-hole Green’s function. From this definition it follows that

the spectral function is normalized to 2π , and spectral weight must always be conserved in
XPS lineshapes.

The Green’s function for the core hole must be calculated using the full wavefunction
for the many-electron system including the itinerant electrons, and therefore involves matrix
elements for the overlap of the many-electron ground state with all the different states excited
by the suddenly switched core hole. In this indirect way XPS probes the spectrum of the
itinerant-electron liquid.

In the absence of any interaction with the core hole (V (q) ≡ 0) the itinerant electrons
remain in their ground state and the core-hole spectral function is a single coherent delta-
function peak

Ah(ω) = 2πδ(ω − εd). (5)

Interaction with itinerant electrons transfers spectral weight to an incoherent tail and, under
certain conditions, eliminates the coherent (delta-function) part of the spectral function entirely.

We evaluate Gret
h (t) in the presence of interaction (V (q) �= 0) using a linked-cluster

expansion [8]

Gret
h (t) = −iθ(t)e−iεd t exp

[ ∞∑
l=1

Fl(t)

]
(6)
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where the coefficients Fl(t) are given by

Fl(t) = 1

l
(−i)l

∫ t

0
dt1 · · ·

∫ t

0
dtl 〈|T V (t1) · · ·V (tl)|〉connected. (7)

The leading term in this series, F1(t), is purely real and contributes only an absolute shift
in the core line. For a purely local interaction (V (q) = V0), this is simply proportional to the
density of electrons, and therefore unchanged by the opening of a gap.

It is the second-order term, F2(t), which contains interesting many-body physics and,
to second order in V (q), determines the XPS lineshape. This is seen to be related to the
density–density correlation function (charge susceptibility), and indeed it can be rewritten as

F2(t) = 1

ν

∑
q

|V (q)|2
{

i

2
χ ′
ρ(q, ω = 0)t +

1

π

∫ ∞

0
dω χ ′′

ρ (q, ω)
1 − e−iωt

ω2

}
(8)

where χ ′
ρ and χ ′′

ρ are the real and imaginary parts of the retarded density–density correlation
function in frequency space [9].

The first part of this expression is an energy shift. It is sensitive to the opening of a gap and
for delta-function interaction it is proportional to the real part of the local charge susceptibility.
The second, more complicated term, determines the lineshape. We write this as

F 2(t) = −
∫ ∞

0
dω R(ω)

1 − e−iωt

ω2
(9)

where

R(ω) = − 1

π

∑
q

|V (q)|2χ ′′
ρ (q, ω) (10)

is a spectral representation of the perturbation. The core-hole–itinerant-electron interaction
V (q) is short ranged, and for the purposes of this article may be approximated by the purely
local interaction V (q) = V0, so

R(ω) = − 1

π
|V0|2

∑
q

χ ′′
ρ (q, ω). (11)

To find the XPS lineshape within these approximations is then a matter of calculating the
imaginary part of the local density–density correlation function as a function of frequency.
In the next section we work through several examples, rederiving the familiar asymmetric
(Doniach–Sunjic) lineshape for a core level in a metal and showing how it is modified by the
opening of a gap in the excitation spectrum.

3. Band metals and semiconductors

In this section we will calculate the lineshape for a normal metal, modelled as a band of non-
interacting electrons using equation (9), and observe how it changes when a gap is opened in
the density of states. For simplicity we assume zero temperature and a delta-function potential
for the core hole.

Within a non-interacting picture, R(ω) can be found from the imaginary part of the
particle–hole bubble:

R(ω) = |V0|2
ν2

∑
k,p

[n(ξp)− n(ξk)]δ(ω + ξp − ξk). (12)
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We consider a flat density of states centred about the Fermi energy, such that

N(ω) =
{
N0 |ω| < ε

0 |ω| > ε.
(13)

R(ω) is then easily calculated:

R(ω) =



αω 0 < ω < ε

α(2ε − ω) ε < ω < 2ε

0 ω > 2ε

(14)

where α = 2N2
0 |V0|2 (the 2 is from the spin summation). In what follows we will use α as a

parameter, rather than separately specifying the bare density of states N0 and the interaction
strength V0. Since these are unchanged by the opening of a gap, values of α found from
experiments on the metallic phase of materials can be used to parametrize predictions for the
their XPS lineshapes in a gapped phase. Empirically, α ∼ 0.1 for most simple metals, and all
plots in this paper have been calculated for α = 0.1.

On substitution of equation (14) in equation (9) we find that the expected delta function at
threshold is lost and instead A(ω) diverges as ωα−1 as ω → 0+. This power-law singularity is
broadened by the core-hole lifetime, yielding an asymmetric lineshape essentially equivalent
to that calculated by Doniach and Sunjic [4]. The XPS lineshape for this simple band metal
formed by numerically convoluting the spectral function with a Lorentzian lifetime envelope
is plotted in figure 1. We have reversed the energy axis in this and all other plots of lineshapes
for ease of comparison with photoemission spectra.
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Figure 1. XPS lineshapes for the flat-density-of-states model with and without a gap of�/ε = 0.05.
The inverse core-hole lifetime is 1/τ = 0.01ε, and α = 0.1. The opening of a gap causes spectral
weight to be shifted out of the power-law tail and back into the restored delta-function peak. In
addition, the entire XPS lineshape (delta function and incoherent tail) undergoes a rigid shift to
lower binding energy.

The replacement of the delta-function peak in Ah(ω) with a power-law singularity is a
consequence of Anderson’s orthogonality catastrophe [10, 11]. The sudden switching of the
core hole in the photoemission process leads to the creation of itinerant-electron–hole pairs
with all possible energies and therefore to a high-energy tail in the spectral function. Since the
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number of electron–hole pairs created with zero energy is logarithmically divergent, the ground
states of the perturbed and unperturbed systems are orthogonal, and there is no delta-function
peak at threshold. The orthogonality catastrophe is effective in a band of non-interacting
electrons whenever the density of states at the chemical potential is finite, i.e. for any band
metal. While all our analysis is limited to second order in the potential V , this is usually small,
and the physics of the orthogonality catastrophe is in any case essentially unaltered by the
inclusion of higher-order processes (multiple particle–hole excitations) [13].

We now calculate the lineshape for a toy model of a gapped system. The presence of the
gap will cut off the number of low-energy excitations made by the core hole, eliminating the
orthogonality catastrophe. The gap has little effect at higher energies, so away from threshold
the lineshape for a system with a small gap should be essentially unchanged. The failure of
the orthogonality catastrophe will however lead to the restoration of a delta-function peak at
threshold. As the gap becomes bigger, progressively more spectral weight is transferred to this
peak, so for large gaps the effective lineshape after convolution with a Lorentzian will be the
symmetric peak associated with an insulator.

At the same time the overall threshold for the XPS line is shifted to lower energies because
the redistribution of charge in the electron gas is suppressed by the opening of the gap, and
therefore less work is done inserting a core hole into the system.

If, for the sake of illustration, we assume that a gap opens such that the new density of
states is

N(ω) =




N0

(
ε

ε −�

)
−ε < ω < −�

N0

(
ε

ε −�

)
� < ω < ε

0 otherwise

(15)

then R(ω) is modified in a straightforward way:

R(ω) =




0 ω < 2�

α̃(ω − 2�) 2� < ω < ε + �

α̃(2ε − ω) ε + � < ω < 2ε

(16)

where α̃ = (ε/ε −�)2α (figure 2). This new form of R(ω) (the imaginary part of the charge
susceptibility) completely determines the revised lineshape through equation (9).

On the other hand it is the change in the real susceptibility which leads to the shift in the
XPS line. The real and imaginary parts of the density correlation function are connected via
Kramers–Kronig relations:

χ ′
ρ(ω) = 1

π

∫ ∞

−∞

dω̃ χ ′′
ρ (ω̃)

ω̃ − ω
. (17)

So the net lineshift caused by the opening of the gap is given by

�E =
∫ ∞

0
dω̃

RN(ω̃)− RG(ω̃)

ω̃
. (18)

This is easily calculated for our model system:

�Emodel = α

{
2ε log 2 −

(
ε

ε −�

)2[
2ε log

(
2ε

ε + �

)
+ 2� log

(
2�

ε + �

)]}
. (19)

We plot this shift as a function of the gap in figure 3. It is a shift away from the power-law tail,
i.e. towards lower binding energy.
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Figure 2. R(ω) for the constant-density-of-states model, with and without a gap of �/ε = 0.05.
The asymmetry exponent is α = 0.1.
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Figure 3. The overall lineshift for the flat-density-of-states model at various gap magnitudes. This
is a shift away from the power-law tail, i.e. to lower binding energy. (α = 0.1.)

A plot of the modified spectral function, convoluted with a Lorentzian to mimic the finite
core lifetime, was shown in figure 1. While the coherent part of the spectral function (delta
function) and its incoherent power-law tail have been mixed by the convolution into one smooth
lineshape, this clearly demonstrates both of the effects discussed above—there is an overall
shift on the line towards lower binding energy (to the right), and spectral weight is transferred
from the tail of the line to the peak, making it seem sharper and more symmetric. It is this
sharpening of the line which is the key signature of the failure of the orthogonality catastrophe.

While this model is obviously a gross oversimplification, it does illustrate the two main
effects of opening a gap at the Fermi energy; to restate—the delta-function peak at threshold
is partially restored, and there is an overall shift in the position of the lineshape towards lower
binding energy.
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4. Superconducting systems

A similar analysis can be performed for a superconductor. The same basic physics holds as for
the toy model considered above, but the density–density correlation function now factorizes
into normal and anomalous parts, so we must consider

P(i(n) = 1

ν2

∑
p,k

|V (k, p)|2 1

β

∑
ipn

[G(p, ipn)G(k, ipn + i(n)− F(p, ipn)F†(k, ipn + i(n)]

(20)

where i(n and ipn are Matsubara frequencies.
Performing the frequency summation and continuing back to real frequencies yields the

expression for R(ω) in a superconductor. At zero temperature and for ω > 0 this reduces to

R(ω) = 1

ν2

∑
k,p

|V (k, p)|2
{(

v2
pu

2
k +

�p�k

4EpEk

)
δ(ω − Ep − Ek)

}
(21)

where

u2
k = 1

2

(
1 +

ξk

Ek

)
v2
k = 1

2

(
1 − ξk

Ek

)

are the coherence factors and Ek =
√
ξ 2
k + �2

k is the excitation energy.
We now examine both s- and d-wave superconductors for two different single-particle

energy dispersions, the linear dispersion of the previous section and a two-dimensional tight-
binding model, and observe how the XPS lineshapes change upon the opening of the super-
conducting gap.

4.1. Linear dispersion

As before, we assume a flat single-particle density of states of the form

N(ω) =
{
N0 |ω| < ε

0 |ω| > ε.
(22)

In a BCS s-wave superconductor with a spherical Fermi surface in the normal state, the
density of excitations is given by

N(E) =



N0

E√
E2 −�2

0

if E > �0

0 otherwise.

(23)

Taking advantage of the delta function, an integral expression for the R(ω) of an s-wave
superconductor is obtained:

RS(ω) = α

∫ ω−�

�

Ep(ω − Ep) + �2√
E2
p −�2

√
(ω − Ep)2 −�2

dEp. (24)

We plot RS(ω) in figure 4. The finite value of RS(ω) = π� at ω = 2� is a consequence
of the divergent, but integrable, density of states for E → �. In the same manner as before
we can calculate the lineshape (figure 5) and shift (figure 6) for an s-wave superconductor.
The existence of the gap in a superconductor produces the same effects as it does in the band
metal. Again there is a partial restoration of the delta-function peak, with a suppression of
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Figure 4. R(ω) for a band metal in its normal state and for both s- and d-wave superconductors
with a gap of �/ε = 0.05. (α = 0.1.)
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Figure 5. XPS lineshapes for the normal metal and s- and d-wave superconductors with a gap of
�/ε = 0.05. 1/τ = 0.01ε and α = 0.1. As in the band metal, the superconductor lineshapes
exhibit a delta-function restoration and a overall shift upon the opening of the gap.

the power-law tail for ω < 2�, and an overall shift of the line. These effects are however
somewhat less pronounced than in the toy model.

The case of a d-wave superconductor, where gap nodes lead to the presence of low-energy
excitations even for � �= 0, is subtly different. In this case the orthogonality catastrophe fails
not because of the absence of zero-energy excitations, but because the number of zero-energy
particle–hole pairs produced remains countable. More formally, the opening of a d-wave gap
at zero temperature means that the leading term in R(ω) is no longer αω but now βω3, and
so the logarithm found from equation (9) in the case of a metal is eliminated. Unlike the
s-wave case, the spectral function does have incoherent structure for 0 < ω < 2�, but this



10098 R Haslinger and N Shannon

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.05 0.1 0.15 0.2 0.25

D-WAVE

S-WAVE

∆/ε

∆E
/ε

Figure 6. Magnitudes of overall lineshifts to lower binding energy for s- and d-wave supercond-
uctors assuming a linear single-particle dispersion and the asymmetry exponent α = 0.1.

is accompanied by a slightly less pronounced transfer of spectral weight to a delta function at
threshold.

The normal state has a circular Fermi surface, the superconducting two-dimensional d-
wave gap being given by

�d(φ) = �0 cos(2φ) (25)

with 0 � φ � 2π . Both R(ω) and the lineshift were obtained numerically via Monte Carlo
integration. The lineshape was calculated as above.

The d-wave lineshape is shown along with that of the s-wave superconductor in figure 5
and the shift in figure 6. The presence of nodes in the gap leads to a slightly different gap
dependence of the shift in the core line; in fact the d-wave lineshift is larger at small � than in
the s-wave case. The shifts can be fitted to power laws at small δ = �/ε. The shift for the s-
wave superconductor is given by�Es = 1.11αδ1.60 and the d-wave shift by�Ed = 0.51αδ1.18

with an uncertainty of ±0.01 in both the coefficient and the power.
If we assume that the gap opens as

√
η (where η = (Tc − T )/Tc), as would be expected

of a mean-field order parameter for T ≈ Tc, this translates into a shift in the line scaling as
�Es ∼ η0.8 in the s-wave case and �Ed ∼ η0.25 in the d-wave case.

4.2. Tight-binding model

In order to make closer contact with real high-Tc superconductors, we also evaluated lineshapes
and shifts for a d-wave superconductor on a half-filled square lattice with underlying tight-
binding electron dispersion

ε(kx, ky) = −2t (cos kx + cos ky)− 4t ′ cos kx cos ky (26)

where t is the nearest-neighbour and t ′ the next-nearest-neighbour hopping integral. We chose
t ′/t = −0.35 as being representative of the in-plane Cu d band in a ‘standard’ 123 compound
such as YBa2Cu3O7−δ . A ‘standard’ 2212 compound such as Bi2Sr2CaCu2O8+x would have
t ′/t = −0.2 [14] but this will not change our results significantly.
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We model a superconductor with d-wave symmetry on a square lattice with a gap function
of the form

�d(kx, ky) = �0

2
(cos(kx)− cos(ky)). (27)

The results for R(ω) for this model of the normal and superconducting state are shown in
figure 7. Once again we have set the coefficient of the leading linear term in the tight-binding
metal to be 0.1, so the XPS asymmetry exponent for the system without a gap is α = 0.1. For
comparison with our previous models we consider a gap size of �0 = 0.05(4|t |). In general,
t is of the order of 0.25 eV. This gives �0 = 50 meV which is clearly larger than in the real
compounds, but not unreasonably so; estimates for YBCO yield�0 ≈ 16 meV and for BSSCO
�0 ≈ 30 meV [15].
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Figure 7. R(ω) for tight-binding metal with t ′/t = −0.35 in the normal state and in a d-wave
superconducting state with �0/4|t | = 0.05. Once again, α = 0.1.

The resulting lineshapes and shifts for these coefficients are displayed in figures 8 and 9.
Clearly the overall trends are exactly the same as those found in the more general models;
a sharpening of the XPS line and a shift to lower binding energy, but both trends are
somewhat more marked than in the constant-density-of-states model with the same parameters
(cf. figures 5 and 6), and the shift is now very nearly linear in �0.

The size of shift which we find may be something of an underestimate of the true shift in
the cuprates, since we neglect all corrections to screening of the core hole which arise from
electron–electron interaction, which is known to be strong in these systems. An improved
estimate might be found by incorporating a Hubbard U -term in the model, and evaluating a
random-phase-approximation series for the screened susceptibility. Such a procedure has
proved necessary to obtain quantitative estimates of the local spin susceptibility in these
systems [17]. Screening through electron–electron interaction is of course a dynamical process,
and leads to corrections to the lineshape and gap dependence of the shift, as well as to its
overall scale. These effects do not change the underlying physics, can in principle be included
in our calculation scheme, and may need to be included in any serious quantitative attempt
to fit experimental lineshapes and lineshifts. We note also that attempts to fit the modified
asymmetric lineshape found in the presence of a gap using a standard Doniach–Sunjic lineshape
can lead to artificially low values of α.
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Figure 8. XPS lineshapes for a tight-binding metal in the normal state and in a d-wave super-
conducting state. �0/4|t | = 0.05, 1/τ = 0.01|4t |, and α = 0.1.
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Figure 9. Overall lineshifts to lower binding energy for a d-wave superconductor with a tight-
binding dispersion in the normal state as a function of the gap parameter �0/4|t |. Once again,
α = 0.1.

5. Pseudogaps and comparison with experiment

Pseudogap behaviour, which can be loosely defined as the (partial) loss of low-energy excit-
ations without the emergence of order, has been observed in many strongly correlated electron
systems1. The best known example is provided by the underdoped cuprate superconductors,
where evidence for the opening of a pseudogap is found from NMR [1] and ARPES experiments
at temperatures between some high-energy scale T ∗ and the superconducting transition

1 This rule of thumb leads to some confusion of terms in cases where a true gap opens in the absence of long-range
order, for example in the one-dimensional Hubbard model at half-filling.
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temperature Tc. As a function of doping, T ∗ interpolates between the Néel temperature
TN ∼ 800 K of the undoped Mott insulator and the transition temperature Tc ∼ 100 K of
the optimally doped superconductor.

What could XPS teach us about the opening of a pseudogap in this case? If the pseudogap
seen in the NMR is a precursor to the formation of superconducting order at low temperatures,
coming about, for example, through the formation of ‘incoherent’ pairs of electrons, then its
effects on XPS lines will be broadly the same as those for a true gap. If on the other hand
the pseudogap is not a precursor to superconductivity but, as has been suggested, a gap for
spin excitations only, then XPS spectra would undergo little or no change at T ∗. In this way
the characteristic XPS signatures of gap opening—the sharpening of an asymmetric core line
and/or a shift of lines to lower binding energy—could be used to distinguish between different
theories of pseudogapped systems.

A shift in core lines to lower binding energy has been reported for XPS spectra taken
above and below Tc, and for spectra taken above and below T ∗ in the cuprate high-temperature
superconductor Bi2Sr2Ca1−xYxCu2O8+δ [16]. At first sight this seems to offer confirmation
of exactly the type of effect which we predict on the basis of core-hole screening—namely
that the opening of a gap for joint spin and charge excitations modifies the XPS lineshape.
However, the quoted experimental values of the shift are of order 100 meV for lines with an
asymmetry α = 0.04. This is much larger than can be reconciled with our simple model;
using the tight-binding model considered above, together with the parametrization α = 0.04
and �0 = 30 meV, we would anticipate a shift in the XPS line of order 1.2 meV. Individual
features in XPS spectra can currently be resolved on a scale of meV, so allowing for a probable
underestimation ofα; our prediction for the shift is in principle observable, but only at the lower
limit of what can be measured. Charge-density-wave systems which are better conductors in
the metallic state and have gaps of order 100 meV are therefore probably better candidates for
testing these ideas.

In fact no very strong conclusion can be drawn from the disagreement between our
estimate and the reported shift in line for Bi2Sr2Ca1−xYxCu2O8+δ , because analysing the
metal–superconductor transition in such a strongly correlated system in terms of the tight-
binding model and BCS models cannot always be expected to give reliable answers, especially
in the underdoped ‘pseudogap’ regime. Nevertheless we believe that our calculation provides
the correct starting point for understanding such experiments, and explanations for the observed
lineshift other than the suppression of screening of the core hole by the opening of the gap
should therefore be considered.

6. Conclusions

The gross effects seen in XPS lineshapes for metallic systems when a gap opens are very
robust and independent of the choice of model. The core line undergoes an overall shift to
lower binding energy and spectral weight is transferred from the power-law tail of the line to
its peak, leading to a sharpening of the line and some loss of overall asymmetry. Modifications
to the lineshape are more easily seen in systems where the gap is large compared with the
intrinsic width of the core level. In this limit subtle differences can also be seen between
different models, although we note that these differences may be quite difficult to detect
in practice.

Any analysis of gap structure should involve several complementary methods. Angle-
resolved photoemission (ARPES) has the ability to provide high-resolution information about
the momentum dependence of the density of states with little degradation due to lifetime
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effects. As such, ARPES has been extensively used for the exploration of gapped and pseudo-
gapped systems, most notably in the cuprate superconductors [18]. However, ARPES has
the disadvantage of probing both the spin and charge channels simultaneously. Independent
information about either of these channels must come from some other source.

In this arena, XPS shows great promise. Lifetime broadening is at first sight problematic,
but in cases where sufficiently narrow core lines can be found, XPS offers a potentially rich
source of information about the changes taking place when a gap opens in the charge channel
of a many-electron system. This may be particularly useful when taken in conjunction with
NMR experiments [3].

For XPS lineshapes with both high resolution and high statistics, deconvolution of the
lineshape can remove much of the lifetime broadening. We have applied code written to
remove Lorentzian lifetime broadening from x-ray absorption (XAS) spectra [19] successfully
to both real and simulated core-level XPS spectra, and find that where the (statistical) noise in
spectra is sufficiently small, lifetime broadening can be reduced to levels where the changes
in lineshape associated with the opening of a gap of 10–100 meV can be observed. The effort
involved in measuring XPS spectra with sufficient accuracy should also be weighed against
the need for background substitution in ARPES, and the time required to measure the entire
Fermi surface. Since with XPS there is only one spectrum to measure for each temperature,
measuring spectra for many different temperatures spanning a phase transition to study the
evolution of lineshapes is also feasible.

For simplicity, we have chosen to work within perturbation theory and to discuss only
models which have simple non-interacting quasiparticle excitations. Both of these restrictions
can be relaxed, and many of the same physical considerations apply to core levels coupled to
strongly interacting electron systems. Experimentally it might well be interesting to look at the
effect on XPS lines of metal–insulator or charge-density-wave transitions where the intrinsic
gap scale is very much larger (∼102 meV), and the effects of gap opening can be expected to
be more pronounced.
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